初中名师视频课程免费试听1200分钟 |
||||
初一全科强化班辅导课程 免费听课 | 初二强化班辅导课程 免费听课 | 初三强化班辅导课程 免费听课 |
例10解方程:
(1) 已知|14-x|=6,求x;
*(2)已知|x+1|+4=2x,求x.
*例11 化简|a+2|-|a-3|
1,解:(1)|-38|=38;(2)|+0.15|=0.15; (3)∵a<0,∴|a|=-a; (4)∵b>0,∴3b>0,|3b|=3b; (5)∵a<2,∴a-2<0,|a-2|=-(a-2)=2-a;
说明:分类讨论是数学中的重要思想方法之一,当绝对值符号内的数(用含字母的式子表示时)无法判断其正、负时,要化去绝对值符号,一般都要进行分类讨论.
分析:判断上述各小题正确与否的依据是绝对值的定义,所以思维应集中到用绝对值的定义来判断每一个结论的正确性.判数(或证明)一个结论是错误的,只要能举出反例即可.如第(2)小题中取a=1,则-|a|=-|1|=-1,而|-a|=|-1|=1,所以-|a|≠|-a|.同理,在第(6)小题中取a=-1,b=0,在第(4)、(7)小题中取a=5,b=-5等,都可以充分说明结论是错误的.要证明一个结论正确,须写出证明过程.如第(3)小题是正确的.证明步骤如下: 此题证明的依据是利用|a|的定义,化去绝对值符号即可.对于证明第(1)、(5)、(8)小题要注意字母取零的情况.
2,解:其中第(2)、(4)、(6)、(7)小题不正确,(1)、(3)、(5)、(8)小题是正确的. 说明:判断一个结论是正确的与证明它是正确的是相同的思维过程,只是在证明时需要写明道理和依据,步骤都要较为严格、规范.而判断一个结论是错误的,可依据概念、性质等知识,用推理的方法来否定这个结论,也可以用举反例的方法,后者有时更为简便.
3,解:(1)T. (2)F.-1的倒数也是它本身,0没有倒数.
(3)F.正数的绝对值都等于它本身,所以绝对值是它本身的数是正数和0. (4)T.任何一个数的绝对值都是正数或0,不可能是负数,所以这句话是错的. (5)F.0的绝对值是0,也可以认为是0的相反数,所以少了一个数0. 说明:解判断题时应注意两点: (1)必须“紧扣”概念进行判断; (2)要注意检查特殊数,如0,1,-1等是否符合题意.
分析:根据平方数与绝对值的性质,式中(a-1)2与|b+3|都是非负数.因为两个非负数的和为“0”,当且仅当每个非负数的值都等于0时才能成立,所以由已知条件必有a-1=0且b+3=0.a、b即可求出.
4,解:∵(a-1)2≥0,|b+3|≥0,又(a-1)2+|b+3|=0 ∴a-1=0且b+3=0∴a=1,b=-3.
说明:对于任意一个有理数x,x2≥0和|x|≥0这两条性质是十分重要的,在解题过程中经常用到.
分析:已知一个数的绝对值求这个数,则这个数有两个,它们是互为相反数. 5,解:(1)∵|a|=6,∴a=±6; (2)∵|-b|=0.87,∴b=±0.87;
(4)∵x+|x|=0,∴|x|=-x.∵|x|≥0,∴-x≥0∴x≤0,x是非正数. 说明:“绝对值”是代数中最重要的概念之一,应当从正、逆两个方面来理解这个概念.
对绝对值的代数定义,至少要认识到以下四点: