初中名师视频课程免费试听1200分钟 |
||||
初一全科强化班辅导课程 免费听课 | 初二强化班辅导课程 免费听课 | 初三强化班辅导课程 免费听课 |
1、比较(﹣4)3和﹣43,下列说法正确的是( )
A.它们底数相同,指数也相同
B.它们底数相同,但指数不相同
C.它们所表示的意义相同,但运算结果不相同
D.虽然它们底数不同,但运算结果相同
2、若a2=25,|b|=3,则a+b所有可能的值为( )
A.8 B.8或2 C.8或﹣2 D.±8或±2
- 已知a,b互为相反数,c,d互为倒数,x的绝对值是2,
试求:x2﹣(a+b+cd)x+(a+b)2007+(﹣cd)2008.
倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.
绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
- 已知,有理数a、b异号,|a|=|b|=1.求a2009+b2010.
5、已知:13=1=×12×22;13+23=9=×22×32;13+23+33=36=×32×42;13+23+33+43=100=×42×52;…
(1)请你猜想填空:13+23+33+…+(n﹣1)3+n3= ;
(2)试计算:13+23+33+…+993+1003.
6、阅读下列解题过程:
为了求1+2+22+23+…+2100的值,可令S=1+2+22+23+…+2100,则2S=2+22+23+24+…+2101,因此2S﹣S=2101﹣1,所以S=2101﹣1,即1+2+22+23+…+2100=2101﹣1,仿照以上方法计算1+3+32+33+…+32014.
7、请你研究以下分析过程,并尝试完成下列问题.
13=12
13+23=9=32=(1+2)2
13+23+33=36=62=(1+2+3)2
13+23+33+43=100=102=(1+2+3+4)2
(1)13+23+33+…+103=
(2)13+23+33+…+203=
(3)13+23+33+…+n3=
- 计算:113+123+133+…+203的值.
8、问题:你能比较两个数20122013与20132012的大小吗为了解决这个问题,我们先把它抽象成这样的问题:写成它的一般形式,即比较nn+1和(n+1)n的大小(即是自然数).然后,我们分析n=1,n=2,n=3…这些简单情形入手,从而发现规律,经过归纳,才想出结论.
(1)通过计算,比较下列各组中两个数的大小
①12 21 ②23 32 ③34 43 ④45 54
⑤56 65 ⑥67 76
(2)从第(1)题的结果经过归纳,可以猜想nn+1和(n+1)n的大小关系;
(3)根据下面归纳猜想得到的一般结论,试比较下列两个数的大小:20122013 > 20132012.
24点游戏
9、如图,有四张背面相同的纸牌.请你用这四张牌计算“24点”,请列出四个符合要求的不同算式.【可运用加、减、乘、除、乘方(例如数2,6,可列62=36或26=64)运算,可用括号;注意:例如4×(1+2+3)=24与(2+1+3)×4=24只是顺序不同,属同一个算式】.