圆知识点

2023年6月13日20:31:43九年级上册数学119阅读模式

一、的概念

集合形式的概念:

1、 圆可以看作是到定点的距离等于定长的点的集合;

2、圆的外部:可以看作是到定点的距离大于定长的点的集合;

3、圆的内部:可以看作是到定点的距离小于定长的点的集合

轨迹形式的概念:

1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;

2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线 (也叫中垂线);

3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;

4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;

5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系

1、点在圆内   ;

2、点在圆上  ;

3、点在圆外   ;

三、直线与圆的位置关系

1、直线与圆相离    无交点;

2、直线与圆相切   有一个交点;

3、直线与圆相交     有两个交点;

 

四、垂径定理

垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;

(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;

(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:

①是直径   ②  ③  ④   ⑤

中任意2个条件推出其他3个结论。

推论2:圆的两条平行弦所夹的弧相等。

即:在⊙中,∵∥

五、圆心角定理

圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。 此定理也称1推3定理,即上述四个结论中,

只要知道其中的1个相等,则可以推出其它的3个结论,

即:①;②;

③;     ④

六、圆周角定理

1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。

即:∵和是弧所对的圆心角和圆周角

2、圆周角定理的推论:

推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;

即:在⊙中,∵、都是同弧所对的圆周角

推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。

即:在⊙中,∵是直径        或∵

∴          ∴是直径

推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

即:在△中,∵

∴△是直角三角形或

注:此推论实是初八年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。

七、圆内接四边形

圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。

即:在⊙中,

∵四边形是内接四边形

 

 

同弧所对的圆内角、圆周角、圆外角的关系

∠ BCD >∠F ﹥∠ E

四边形四个顶点共圆定理:

若四边形中有一组对角的和是180°,那么这个四边形

四个顶点在同一个圆上;

 

八、切线的性质与判定定理

(1)切线的判定定理:过半径外端且垂直于半径的直线是切线;

两个条件:过半径外端且垂直半径,二者缺一不可

即:∵且过半径外端

∴是⊙的切线

(2)性质定理:切线垂直于过切点的半径(如上图)

推论1:过圆心垂直于切线的直线必过切点。

推论2:过切点垂直于切线的直线必过圆心。

以上三个定理及推论也称二推一定理:

即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。

九、切线长定理

切线长定理:

从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。

即:∵、是的两条切线

平分

十、弦切角定理

弦切角:切线与连接切点的弦的夹角;

弦切角定理:弦切角等于切线与弦所夹弧对的圆周角。

如图:PA是⊙O的切线,AB是连接切点的弦,C是圆上任意一点,连接AC,BC,则∠PAB= ∠C

weinxin
向上吧同学
扫描二维码获取学习资料
  • 本文由 发表于 2023年6月13日20:31:43
  • 转载请务必保留本文链接:https://www.cztogz.com/8053.html